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Introduction

“The  goal  of  the  CrypTech  project  is  to  create  an  open-source  hardware  cryptographic

engine that can be built  by anyone from public hardware specifications and open-source

firmware and operated without fees of any kind. The team working on the project is a loose
international collective of engineers trying to improve assurance and privacy on the Internet.

It is funded diversely and is administratively quartered outside the US.

The project solicits functional requirements from a wide range of organizations. It will focus
on the classic low level cryptographic functions and primitives, and not get drawn into re-

implementation of application protocol layers.”

From https://cryptech.is

This report documents the results of a large-scale security assessment of the CrypTech/

DiamondKey HSM firmware. The project was carried out in September 2018 by a joint

team comprising  members  of  Cure53,  Berlin,  and  Trustworks,  Vienna.  It  entailed  a

source  code  audit,  a  cryptography  review  and  additional,  relevant  tests  against  the

aforementioned compound. Nine security-relevant discoveries were made by the testing

team.

 

In terms of resources and timeline, the project team included six testers from Cure53

and two engineers representing Trustworks. Once the agreements on the scope and

schedule were reached, the testing team was granted a time budget of thirtytwo days,

which had then been invested into investigations completed through a range of varied

approaches. In addition, some of the budgeted days were allocated to communications

and coordination  of  the actual  assessment.  The vast  majority  of  work  took place  in

September 2018, specifically in Calendar Weeks (CWs) 38 and 39.

 

Moving on to the approach, a white-box methodology was used for this assessment.

This means that the testers had been provided with access to all relevant sources, as

well  as  benefitted  from  several  test-devices  sent  by  the  customer  for  the  testing

purposes. In addition, the CrypTech/DiamondKey teams organized several walkthroughs

in  order  to  makes  sure  that  the  intricate  and  complex  nature  of  the  scope  is  fully

understood.  In relation to the complexity,  the assessment was divided into six  Work

Packages (WPs), each with clear objectives and targets. While the WP1 encompassed

Documentation Review and WP2 entailed investigations of the System Build/Boot, the

remaining four WPs pertained to audits of the demarcated areas of interest. Specifically,

these were the Verilog Audit (WP3), C/Verilog Interface Audit (WP4), General C Audit

(WP5), and, last but not least, the Cryptography Audit (WP6).

 

Given the excellent product overviews and walkthroughs that the Cure53 and Trustworks

teams received prior to the start of the assessment, the need for clarifications or contact

during the actual project was not overly pronounced. For the most part, Cure53 provided

status  updates  to the CrypTech/DiamondKey  teams and only  posed very few minor

questions.  Live  test-related  communications  were  done  on  several,  dedicated  and
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shared Slack channels. One channel was used to coordinate the work between Cure53

and Trustworks, while the other served as a direct line between the testers and the in-

house teams at CrypTech/DiamondKey. With this setup, the project progressed well and

without any major delays, even in the face of several test devices arriving late at their

final destinations due to logistical problems.

 

The assessment was successful in so far that it revealed a number of issues that the

CrypTech/DiamondKey teams clearly needs to tackle. Among the aforementioned nine

discoveries, five were categorized as actual security vulnerabilities and four belong to

the  class  of  general,  less-severe  weaknesses.  It  is  vital  to  underline  that  all

vulnerabilities had greatly elevated rankings, meaning that the risks they posed were

significant. Three problems were ascribed with the highest-possible “Critical” severity,

while the remaining two vulnerabilities were deemed to signify “High”-level, substantial

threats.  Foreshadowing some of  the conclusions,  this  clearly  indicates  that  -  from a

security perspective - the results are not satisfactory when seen vis-à-vis the CrypTech/

DiamondKey HSM firmware’s goals.

 

In the following sections, this report will  first shed light on the items in scope of this

assessment. Then, the findings will be described in a considerable, technical detail on a

case-by-case  basis.  Whenever  possible,  the  testing  team  also  furnishes  advice  on

possible mitigation routes for the spotted and distinct problems. Lastly, the report shares

some  general  impressions  gained  by  the  Cure53  and  Trustworks  testing  team,

commenting  on  the  overall  security  posture  of  the  CrypTech/DiamondKey  HSM

compound.

Scope

• CrypTech/DiamondKey Firmware

◦ Cure53 was tasked with auditing the code for the CrypTech/DiamondKey firmware;

full access to all relevant sources was granted.

◦ Cure53 was also supplied with several test-devices to directly work on.

◦ The teams also go access to the extended documentation pertaining to the inner-

workings of the firmware. This facilitated reaching a better coverage during this audit.
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Identified Vulnerabilities

The following sections list both vulnerabilities and implementation issues spotted during

the testing period. Note that findings are listed in a chronological order rather than by

their degree of severity and impact. The aforementioned severity rank is simply given in

brackets  following  the  title  heading  for  each  vulnerability.  Each  vulnerability  is

additionally given a unique identifier (e.g. CT-01-001) for the purpose of facilitating any

future follow-up correspondence.

CT-01-005 MCU: OOB writes through dynamic stack allocations (Critical)

Throughout the code, multiple locations use untrusted user-input to dynamically allocate

memory on the stack. This can lead to out-of-bound (OOB) writes and therefore memory

corruptions,  effectively  due  to  overly  large  parameters.  Below  is  an  example  code

excerpt that depicts vulnerability to this issue. An attacker can trigger an OOB write by

providing a negative value for attributes_len.

Affected File:

Source/Cryptech/releng/alpha/source/sw/libhal/rpc_server.c

An Example of Affected Code:
static hal_error_t pkey_get_attributes(const uint8_t **iptr, const uint8_t * 
const ilimit, uint8_t **optr, const uint8_t * const olimit)
{
    hal_client_handle_t client;
    hal_pkey_handle_t pkey;
    uint32_t attributes_len, u32;
    uint8_t *optr_orig = *optr;
    hal_error_t err;

    check(hal_xdr_decode_int(iptr, ilimit, &client.handle));
    check(hal_xdr_decode_int(iptr, ilimit, &pkey.handle));
    check(hal_xdr_decode_int(iptr, ilimit, &attributes_len));

    hal_pkey_attribute_t attributes[attributes_len > 0 ? attributes_len : 1];

    for (size_t i = 0; i < attributes_len; i++)
        check(hal_xdr_decode_int(iptr, ilimit, &attributes[i].type));
[...]

In  a  low-level  assembly,  a  dynamic  stack  allocation  as  highlighted  above,  is  simply

subtracting a value from the stack pointer. Since the size parameter, controlled by the

attacker, is a 32-bit value, it is possible to move the stack pointer to anywhere in the

address space. Using the decode operation in the last for-loop, an attacker can achieve

an arbitrary memory write and, ultimately, gain arbitrary code execution.

It is recommended to sanitize and validate all user-input, especially when used in the

context of critical operations such as memory allocation. The above code excerpt is just

one example that provides ideal conditions for exploitation. It is further recommended to

review other parts of the code that follow a similar pattern and apply the same fix.
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Note:  This issue was identified during a manual code audit  but not yet verified on a

running system. Given the time constraints of this assessment, the team opted for an

increased coverage instead of clean reproducibility.

CT-01-006 MCU: Value cast allows a bypass of the size checks (Critical)

The decode functions, which are used to unserialize data from the input request, preform

size checks to ensure that enough data is indeed available to unserialize the given type.

For some types, the length parameter is user-controlled, for example when unserializing

a string. These size checks can be bypassed due to the cast to a signed int.

Affected File:

Source/Cryptech/files/Source/Cryptech/releng/alpha/source/sw/libhal/xdr.c

Affected Code:
hal_error_t hal_xdr_decode_fixed_opaque_ptr(const uint8_t ** const inbuf, const 
uint8_t * const limit, const uint8_t ** const value, const size_t len)
{
[...]
    /* buffer overflow check */
    if (limit - *inbuf < (ptrdiff_t)len)
        return HAL_ERROR_XDR_BUFFER_OVERFLOW;
[...]

Highlighted above is the check in question, which normally ensures that enough data is

available to unserialize len amount of bytes. Using a negative value for len will bypass

the check and potentially lead to buffer overflows or out-of-bound (OOB) writes.

To  verify  that  the  compare  operation  is  signed,  a  small  application  was  written  to

replicate  the  behavior  and  inspected  it  with  a  disassembler  (replicated  on  an  ARM

architecture).  The  list  below  shows  the  relevant  C++  source  and  the  connected

disassembly.

PoC Application (C++):
#include <cstdio>
#include <cstdlib>
#include <string.h>
#include <stdint.h>

int main(int argc, char *argv[])
{
        uint8_t first[32];
        uint8_t second[32];
        size_t len = atoi(argv[1]);

        if (&second[0] - &first[0] < (std::ptrdiff_t)len)
                printf("too large\n");

        return 0;
}

PoC Application (ARM disassembly):
[...]
0x0040065e <+50>:    cmp     r2, r3
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0x00400660 <+52>:    bge.n   0x40066c <main+64>
[...]

As seen in the disassembly, the bge instruction is used to branch and this is based on

the  flags  set  by  cmp.  The  bge instruction  branches  depend  on  a  signed  compare,

therefore negative values for len are capable of bypassing the check.

It  is  recommended  to  perform  unsigned  compares  as  len is  actually  of  the  size_t

unsigned type. However, the cast turns the entire compare to a signed compare, which

made this issue possible. Similarly to CT-01-005, the documentation only elaborates on

one instance of this issue although it is recommended to review other areas of the code

for similar patterns.

Note: This issue was identified during a manual code audit but not yet verified on a

running system. Given the time constraints of this assessment, the team opted for an

increased coverage instead of clean reproducibility.

CT-01-007 MCU: Buffer overflow via Set- and Get- attributes (Critical)

By abusing the issue described in  CT-01-006, a buffer overflow vulnerability can be

triggered through the set_- and get_attributes() endpoints. This potentially crashes the

application due to the access of unmapped memory regions. More generally, it can lead

to memory disclosure/corruptions.

What follows is an explanation how this memory corruption can be triggered, along with

code excerpts showing the relevant pieces of code. The initial entrypoint is shown in the

following part of the application’s source code.

Affected File:

Source/Cryptech/releng/alpha/source/sw/libhal/rpc_server.c

Affected Code:
static hal_error_t pkey_get_attributes(const uint8_t **iptr, const uint8_t *   
        const ilimit,uint8_t **optr, const uint8_t * const olimit)
{
[...]
    check(hal_xdr_decode_int(iptr, ilimit, &attributes_len));
[...]

    check(hal_rpc_pkey_get_attributes(pkey, attributes, attributes_len,
                                      attributes_buffer, 
attributes_buffer_len));
[...]
                    err = hal_xdr_encode_variable_opaque(optr, olimit, 
attributes[i].value, attributes[i].length);

A  new  attribute  can  be  stored  with  a  corrupted  length value  and  value pointer,

specifically  using  the  bypass  shown  in  CT-01-006.  This  corrupted  attribute  is  then

retrieved using the  get_attributes() endpoint  and the corresponding  pkey handle.  In
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order  to  return  the  data,  the  attribute  is  serialized  using  the

hal_xdr_encode_variable_opaque() function.

Affected File:

Source/Cryptech/releng/alpha/source/sw/libhal/xdr.c

Affected Code:
hal_error_t hal_xdr_encode_variable_opaque(uint8_t ** const outbuf, const 
uint8_t * const limit, const uint8_t * const value, const size_t len)
{
    hal_error_t err;

    /* encode length */
    if ((err = hal_xdr_encode_int(outbuf, limit, (uint32_t)len)) == HAL_OK) {
        /* encode data */
        if ((err = hal_xdr_encode_fixed_opaque(outbuf, limit, value, len)) != 
HAL_OK)
[...]
hal_error_t hal_xdr_encode_fixed_opaque(uint8_t ** const outbuf, const uint8_t 
* const limit, const uint8_t * const value, const size_t len)
{
[...]
    /* buffer overflow check */
    if (limit - *outbuf < (ptrdiff_t)((len + 3) & ~3))
        return HAL_ERROR_XDR_BUFFER_OVERFLOW;

    /* write the data */
    memcpy(*outbuf, value, len);

The corrupted value pointer and length field are passed down in the call chain and used

to copy the data into the output buffer. This essentially boils down to a memcpy() call.

Since the len parameter is either negative or very large when treated as unsigned, the

memcpy() eventually overflows the outbuf buffer.

As in CT-01-006, it is recommended to perform an unsigned compare during the size

check instead of manually casting to signed integers.

Note: This issue was identified during a manual code audit but not yet verified on a

running system. Given the time constraints of this assessment, the team opted for an
increased coverage instead of clean reproducibility.

CT-01-008 MCU: Session reuse via weak client handles (High)

A  potential  login  bypass  or  session  reuse  vulnerability  was  found  in  the  general

mechanism that detects whether a user is authenticated against the RPC server at a

given moment. The problem stems from the fact that only a 32-bit client handle is used

inside the routine that checks whether a slot for this ID is allocated at the moment of the

check. The login mechanism is shown in the following parts of the application’s source

code.
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Affected File:

Source/Cryptech/releng/alpha/source/sw/libhal/rpc_server.c

Affected Code:

static hal_error_t login(const uint8_t **iptr, const uint8_t * const ilimit,
                         uint8_t **optr, const uint8_t * const olimit)
{
    hal_client_handle_t client;
    uint32_t user;
    const uint8_t *pin;
    size_t pin_len;

    check(hal_xdr_decode_int(iptr, ilimit, &client.handle));
    check(hal_xdr_decode_int(iptr, ilimit, &user));
    check(hal_xdr_decode_variable_opaque_ptr(iptr, ilimit, &pin, &pin_len));

    return hal_rpc_login(client, user, (const char * const)pin, pin_len);
}

One can observe that the client transmits a handle parameter that consists of a 32-bit

integer value. By default, cryptech_muxd chooses a client handle that is dependant on

the time, so it then increments on each incoming connection. In subsequent code, the

client and its handle parameter are transparently handed over to the inner functions of

the login code.

Affected File:

Source/Cryptech/releng/alpha/source/sw/libhal/rpc_misc.c

Affected Code:

static hal_error_t login(const hal_client_handle_t client,
                         const hal_user_t user,
                         const char * const pin, const size_t pin_len)
{
[...]
  if ((err = hal_pbkdf2(NULL, hal_hash_sha256, (const uint8_t *) pin, pin_len,
                        p->salt, sizeof(p->salt), buf, sizeof(buf), 
iterations)) != HAL_OK)
    return err;

  unsigned diff = 0;
  for (size_t i = 0; i < sizeof(buf); i++)
    diff |= buf[i] ^ p->pin[i];

  if (diff != 0) {
    hal_sleep(HAL_PIN_DELAY_ON_FAILURE);
    return HAL_ERROR_PIN_INCORRECT;
  }

  return alloc_slot(client, user);
}

As depicted above, as soon as a matching username/PIN combination is found to exist

in the current keystore, a slot is allocated to the authenticated. From then on, whenever

a privileged operation verifies the presence of  an authenticated user,  it  simply calls
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hal_rpc_is_logged_in() to  see  whether  the  action  is  allowed  or  not.  This  can  be

observed on the items supplied next.

Affected File:

Source/Cryptech/releng/alpha/source/sw/libhal/rpc_server.c

Affected Code:
static hal_error_t is_logged_in(const uint8_t **iptr, const uint8_t * const 
ilimit,
                                uint8_t **optr, const uint8_t * const olimit)
{
    hal_client_handle_t client;
    uint32_t user;

    check(hal_xdr_decode_int(iptr, ilimit, &client.handle));
    check(hal_xdr_decode_int(iptr, ilimit, &user));

    return hal_rpc_is_logged_in(client, user);
}

As one can see, the code again deserializes the integer value of the client handle and

matches it against the currently allocated handles.

Affected File:

Source/Cryptech/releng/alpha/source/sw/libhal/rpc_misc.c

Affected Code:
static hal_error_t is_logged_in(const hal_client_handle_t client,
                                const hal_user_t user)
{
  if (user != HAL_USER_NORMAL && user != HAL_USER_SO && user != HAL_USER_WHEEL)
    return HAL_ERROR_IMPOSSIBLE;

  client_slot_t *slot = find_handle(client);

  if (slot == NULL || slot->logged_in != user)
    return HAL_ERROR_FORBIDDEN;

  return HAL_OK;
}

The problem with this approach is that an authenticated user will  continue to use a

predictable  value for  the client  handle.  Even a  randomly  chosen one would  not  be

sufficient since it is easily possible to bruteforce a 32-bit value. As such, an attacker that

is able to talk to the CrypTech USB device (depending on the system, the device file

might be readable and writable), they can keep trying to send a handle to a client until it

matches the currently allocated hal_rpc_is_logged_in() and returns true. This works as

long  as  another  authenticated  user  does  not  log  out  manually.  Upon  success,  the

attacker will have full privileges over a wheel or so user.
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It is recommended to implement a better session mechanism in which the client handle

is  chosen by  the server.  This  item must  be sufficiently  large for  making bruteforce

attempts unfeasible.

CT-01-009 MCU: OOB read/write via ASN.1 key files with large numbers (High)

It was discovered that the function that parses ASN.1 keys does not check the size of

the key's numbers. This makes it possible to corrupt memory and potentially execute

arbitrary code by providing a key with large numbers. The bug can be triggered by

importing a crafted key file.  The issue was tested locally by providing a crafted key

directly to the key parsing function at hal_rsa_private_key_from_der().

Affected File:

libhal/rsa.c

Affected Code:
#define RSAPrivateKey_fields    \
  _(version);                   \
  _(key->n);                    \
[...]
  _(key->u);
[...]

hal_error_t hal_rsa_private_key_from_der(hal_rsa_key_t **key_,
                                         void *keybuf, const size_t keybuf_len,
                                         const uint8_t *der, const size_t 
der_len)
{
  if (key_ == NULL || keybuf == NULL || keybuf_len < sizeof(hal_rsa_key_t) || 
der == NULL)
    return HAL_ERROR_BAD_ARGUMENTS;

  memset(keybuf, 0, keybuf_len);
  hal_rsa_key_t *key = keybuf;
[...]
#define _(x)                                                            \
  {                                                                     \
    size_t n;                                                           \
    err = hal_asn1_decode_integer(x, d, &n, vlen);                      \
    [...]                                           \
  }
  RSAPrivateKey_fields;
#undef _

The parsed key is stored in the key structure which is a pointer to keybuf that needs to

be a buffer  with the size of the  hal_rsa_key_t structure, with the latter being a fixed

value. By using the RSAPrivateKey_fields(). the key parameters are read from the user-

provided der buffer and stored in the key structure. The parsing that is relevant for this

process happens in  hal_asn1_decode_integer() where first the size of the value and

then the value itself is obtained from.

Affected File:

libhal/asn1.c
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Affected Code:
hal_error_t hal_asn1_decode_integer(fp_int *bn, const uint8_t * const der, 
size_t *der_len, const size_t der_max)
{
[...]
    if ((err = hal_asn1_decode_header(ASN1_INTEGER, der, der_max, &hlen, 
&vlen)) != HAL_OK)
    return err;
[...]
  fp_init(bn);
  fp_read_unsigned_bin(bn, (uint8_t *) der + hlen, vlen);
  return HAL_OK;
}

The fp_read_unsigned_bin() function reads a number from a buffer and stores it in the

appropriate fp_int variable pointed to by bn. Different code sections are used based on

the system's endianness.

Affected File:

/sw/thirdparty/libtfm/tomsfastmath/src/bin/fp_read_unsigned_bin.c

Affected Code:
void fp_read_unsigned_bin(fp_int *a, const unsigned char *b, int c)
{
  /* zero the int */
  fp_zero (a);
#if (defined(ENDIAN_LITTLE) || defined(ENDIAN_BIG)) && !defined(FP_64BIT)
 [...]
  {
     unsigned char *pd = (unsigned char *)a->dp;

     if ((unsigned)c > (FP_SIZE * sizeof(fp_digit))) {
        int excess = c - (FP_SIZE * sizeof(fp_digit));
        c -= excess;
        b += excess;
     }

[...]
#else
  /* read the bytes in */
  for (; c > 0; c--) {
     fp_mul_2d (a, 8, a);
     a->dp[0] |= *b++;
     a->used += 1;
  }
#endif

It is assumed that one of the ENDIAN_LITTLE or ENDIAN_BIG pair is always defined,

but in case FP_64BIT is defined as well, the length in c is not checked and a->used can

grow to a value that exceeds the size of a->dp. In turn, this results in an OOB read/write

in fp_mul_2d().   

Affected File:

/sw/thirdparty/libtfm/tomsfastmath/src/mul/fp_mul_2d.c
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Affected Code:
for (x = 0; x < c->used; x++) {
          carrytmp = c->dp[x] >> shift;
          c->dp[x] = (c->dp[x] << b) + carry;
          carry = carrytmp;
}

The core problem here is that the for-loop in  fp_read_unsigned_bin() can increase  a-

>used indefinitely,  thus  causing  OOB memory  access  in  fp_mul_2d.  Therefore,  it  is

recommended to always execute the length check in fp_read_unsigned_bin().

Note: This issue was identified during a manual code audit but not yet verified on a

running system. Given the time constraints of this assessment, the team opted for an

increased coverage instead of clean reproducibility.

Miscellaneous Issues

This section covers those noteworthy findings that did not lead to an exploit but might aid

an attacker in achieving their malicious goals in the future. Most of these results are

vulnerable code snippets that did not provide an easy way to be called. Conclusively,

while a vulnerability is present, an exploit might not always be possible.

CT-01-001 FPGA: Incomplete asynchronous reset of FPGA modules (Low)

The FPGA design features an asynchronous reset input PIN. Asserting the reset signal

cancels all running operations and restores the circuit’s initial state. Although it is not

strictly required to reset each and every bit, it remains strongly recommended. Firstly, it

is because resetting all registers guarantees to completely restore the initial state and

prevents error  conditions  from being carried  over.  Secondly,  clearing all  stored data

makes sure that information like plaintext or key material is completely wiped and can no

longer be accessed.

 

Affected File:

Source/Cryptech/releng/alpha/source/core/cipher/aes/src/rtl/aes_key_mem.v

 

Affected Code:
  reg [127 : 0] key_mem [0 : 14];
  [...]
  reg [127 : 0] prev_key0_reg;
  [...]
  reg [127 : 0] prev_key1_reg;
  [...]
  always @ (posedge clk or negedge reset_n)
    begin: reg_update
      [...]
      if (!reset_n)
        begin
          for (i = 0 ; i < 4 ; i = i + 1)
            key_mem [i] <= 128'h0;

          rcon_reg     <= 8'h0;
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          ready_reg    <= 1'b0;
          round_ctr_reg <= 4'h0;
          key_mem_ctrl_reg <= CTRL_IDLE;
        end
        [...]
    end // reg_update

 

The  aes_key_mem module  generating  AES  round  keys  does  not  clear  registers,

specifically  prev_key0_reg[] and  prev_key1_reg[],  while  it  also  preserves

key_mem[4:14].  Although  a  reset  prev_key0_reg[] and  prev_key1_reg[] are  always

written before read, key_mem[] can be accessed by the parent modules and even used

by the microcontroller without initialization.

Note 1: The code furnished  here  is  just  one example  of  this  behavior.  It  is  further

recommended  to  review  other  modules  and  establish  a  design  pattern  where  all

registers are cleared upon reset.
 

Note 2: Block RAM as instantiated in ECDSA and MODEXP modules cannot be reset

asynchronously but may be replaced with distributed RAM.

CT-01-002 FPGA: Side-effects on writes to memory-mapped interface (Low)

Each FPGA core provides a memory-mapped interface. Usually the core’s parameters

are set by writing values into an appropriate configuration registers before input data is

copied and the processes are started by setting specific bits of control registers.

Some cores have undocumented restrictions on using the memory-mapped interface. In

many cases, it makes no sense to write certain values or change registers at specific

times. But doing so anyway, this is not always handled correctly and can cause side-

effects that result in invalid output.

 

Affected Files:

Source/Cryptech/releng/alpha/source/core/cipher/aes/src/rtl/aes.v
Source/Cryptech/releng/alpha/source/core/cipher/aes/src/rtl/aes_core.v

 

In the AES module, the round keys are updated by writing the  INIT bit  of the  CTRL

register.  This  can  be  done  simultaneously  to  a  running  en-  or  decryption,  thereby

changing the key halfway through processing. Writing to the  CONFIG register is also

possible at any time and changes to the key length or mode are immediately effective.

Depending on the timing, completing such action during a running process very likely

corrupts the output.

 

Note: The above listed weaknesses are just examples. It is further recommended to

review  other  cores  and  restrict  writing  as  much  as  possible  by  either  ignoring
unacceptable input or latching values during running processes.
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CT-01-003 FPGA: Readout of intermediate results via the external Interface (Low)

The cores  provide  their  output  via  registers  of  the  memory-mapped  interface.  They

assert a valid flag once the results are ready. Some cores use their output registers

during calculations and thereby allow reading of intermediate results.

 

Affected Files:

Source/Cryptech/releng/alpha/source/core/cipher/aes/src/rtl/aes.v

Source/Cryptech/releng/alpha/source/core/cipher/aes/src/rtl/aes_core.v
Source/Cryptech/releng/alpha/source/core/cipher/aes/src/rtl/aes_decipher_block.v

Source/Cryptech/releng/alpha/source/core/cipher/aes/src/rtl/aes_encipher_block.v
 

In  the AES core,  none of  the modules  mask the output  before it  is  exposed to the

memory-mapped interface and, thus, to the microcontroller. Reading registers RESULT0

to  RESULT3 always  returns  the  values  of  the  currently  processed  round,  possibly

exposing key material.

 

Note: The above listed weaknesses are just examples. It is further recommended to

review other cores and restrict reading of results until they are actually ready.

CT-01-004 MCU: Hardening memory-mapped interface access in libhal (Low)

Within  the  microcontroller,  libhal provides  low-level  drivers  for  accessing  the  FPGA

cores’ functionality. Some functions interacting with the FPGA cores do not check for the

ready flag before writing registers or starting a process. At times, in addition, the ready

flag is checked instead of the valid flag before reading results.

 

Affected File:

Source/Cryptech/releng/alpha/source/sw/libhal/aes_keywrap.c

 

Affected Code:
static hal_error_t do_block(const hal_core_t *core, uint8_t *b1, uint8_t *b2)
{
  hal_error_t err;

  hal_assert(b1 != NULL && b2 != NULL);

  if ((err = hal_io_write(core, AES_ADDR_BLOCK0, b1, 8)) != HAL_OK ||
  (err = hal_io_write(core, AES_ADDR_BLOCK2, b2, 8)) != HAL_OK ||
  (err = hal_io_next(core))                      != HAL_OK ||
  (err = hal_io_wait_ready(core))                != HAL_OK ||
  (err = hal_io_read(core, AES_ADDR_RESULT0, b1, 8)) != HAL_OK ||
  (err = hal_io_read(core, AES_ADDR_RESULT2, b2, 8)) != HAL_OK)

return err;

  return HAL_OK;
}

 

The  do_block() function is called directly after loading a key and the  ready flag is not

verified before starting a new en- or decryption. Furthermore the ready flag is checked

instead of the  valid  flag prior to the output’s reading. This results in a race condition
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which, due to the system’s current timing characteristics, is unlikely to cause any actual

problems.

 

Note: The above listed code excerpt is just one example. It is strongly recommended to

review other modules and ensure the correct use of the memory-mapped interface for

the cores.

Conclusions

All  in  all,  the  results  of  this  September  2018  security  assessment  of  the

CrypTech/DiamondKey HSM scope are suboptimal. The testers from both Cure53 and

Trustworks can only conclude that the project, in its current state, calls for considerably

more  security  attention.  This  can  be  drawn  from  the  underwhelming  quality  of  the

examined  code,  as  well  as  clearly  stems from the  extensive  number  of  five  issues

considered  to  be  of  either  “Critical”  or  “High”-severity.  In  other  words,  the  tested

compound  is  at  an  increased  risk  of  a  compromise  and  presently  exhibits  limited

success when it comes to meeting security goals.

As this  white-box method assessment  involved  eight  testers who spent  32 days on

examining various items in scope under the premise of six distinct work packages, the

following sections will reflect on the detailed WP outcomes in a more structured fashion. 

C-Code Audit 

The code auditors are in  agreement that the quality of the C code can definitely  be

improved. One positive takeaway, however, is that the spotted flaws stem from a single

issue, which is seemingly rather easy to fix. For example, the problem noted in CT-01-

006 describes a bypass that can happen due to a misconception about the length check

concerning opaque pointers. With the removal of the signed cast and the resulting fields

with negative lengths, the tested compound became exposed to a number of resulting

issues. To reiterate, these can luckily be rectified in one sweep. Next up, the testers

unveiled an entire, highly prominent bug class. The issue, documented as  CT-01-005

shows that dynamic stack allocations are entirely user-controlled and may offer arbitrary

read/writes in the worst-case scenario. As this behavior has been observed at multiple

and different locations in the code base, it is necessary to develop a comprehensive fix

and ensure that all occurrences are actually encompassed by the repairs. Once these

two broader patterns of attacks can be prevented, it is believed that the already present

sanity  checks  will  be  able  catch  most  of  the  buffer  overflow  and  signed/unsigned

vulnerabilities.

However, there are still weaknesses that demonstrate that bad design decisions were

made at one point or another. One piece of evidence for this is the fact that the login-

check is not centralized. This means that multiple RPC calls have to be made in hopes

of manually verifying whether a given current user has actually been authenticated. With

this in mind, it is understandable that forgetting to add the actual hal_rpc_is_logged_in()

Cure53, Berlin · 09/26/18                              15/19



         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14 

         D 10709 Berlin

         cure53.de · mario@cure53.de 

check  can  be  quite  common  during  the  process  of  establishing  new  RPC  calls.

Henceforth, unauthenticated users have the power to issue privileged commands. Once

more, the problem could be eradicated in one go if a more centralized approach became

the new standard.

Staying on the topic of incorrect design choices, the problem discussed in  CT-01-008

illuminates that the client’s session (actually called the client handle) is not set by the

server but rather chosen by the client. Badly written clients can thus use a weak session-

ID and risk their session getting hijacked by attackers that simply wait for another user to

log in and effectuate a takeover afterwards. Moreover, also the server components need

to make sure this handle is not trivial to brute-force.

Last but not least, CT-01-009 is a result of a parsing vulnerability for the ASN.1 keys.

Since this issue was actually found through fuzzing, it is important that also any third-

party code is extensively  tested before being shipped to sensitive hardware such as

CrypTech/DiamondKey.  Although  test-cases  for  unit-testing  are  present,  it  would  be

fruitful to combine them with fuzzing frameworks, so that the incorrectly formed keys can

be encompassed  by  the prevention  mechanisms too.  This  would  actually  be  a  vital

decision because malicious public keys (i.e. able to exploit a device) signify the worst-

case scenario for the integrity of the tested compound. In that sense, parsing needs to

be extremely robust and defensive, absolutely guaranteeing that all incorrectly formatted

fields are consistently handled in a proper way.

Cryptography

In this part of the assessment, all of the specifications were reviewed in full and in a

detailed  manner.  Importantly,  the  code  connected  to  the  primitives  -   AES,  hash

functions,  ChaCha,  ECDSA  -  was  also  reviewed.  Completing  the  items  under

investigation,  some of the custom, internal protocols  such as  cryptech_backup,  were

also included in the assessment.

It needs to be mentioned that the cryptographic part of the project could have benefitted

from a slightly better information exchange right at the gate. The provided specifications,

namely “Alpha Developer Reference” and also the TRNG architecture, were extremely

helpful and well-written. It is thus very surprising that they were not originally included

with the materials received by the testers. It is hard to find a reason behind this, as this

omission cost the project valuable time early on.

Having said that, the results in the cryptographic realm are outstandingly positive. Not

only there were no security issues found, but also the overall design has been evaluated

as excellent. This especially holds for the TRNG, which displays many strengths despite

its  simple  architecture.  The  testing  team  is  happy  to  report  that  the  cryptographic

aspects connected to the tested items are well under-control.  
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Verilog Code Audit 

While certain security goals have been accomplished by the Verilog code, its audit led to

the  unveiling  of  some  minor  problems.  The  FPGA  is  generally  well-designed  and

correctly  implemented.  All  modules  have  been  written  in  a  straightforward  manner,

making the code easy to read and audit  for  security  issues.  The concept  of  having

individual  and  independent  cores  that  share  a  memory-mapped  interface  in  a  well-

defined  manner,  makes  the  design  scalable.  With  this  in  place,  adding  new

cryptographic modules should not affect previously established and tested modules. The

code has enough comments for orientation, yet it  would be advised for the modules’

interfaces and the restrictions on using them to be documented. On a plus side, there

are  plenty  of  test-benches  for  simulation  and  example  drivers  for  the  STM

microcontroller that demonstrate the intended use are available.

In sum, the review of the Verilog code did not reveal any exploitable vulnerabilities but

simply let  the testing team highlight  some issues that  could lead to problems in the

future. It should be noted that all of the listed flaws and points were documented with

examples from the AES core because this core was the first one to be reviewed and

featured all types of the uncovered problems. It needs to be clearly understood that this

does not make it the only affected core.

Among  the  weaknesses,  a  reset  signal  (see  CT-01-001)  within  a  hardware  design

should  probably  reset  as  many  registers  as  possible.  The  few  additional  routing

resources that are needed can probably be seen as negligible for the FPGA. Being able

to wipe key material could come in handy when reacting to tampering with the device.

Similarly,  from a security perspective it  would be a good idea to make the interface

between FPGA and microcontroller as robust as possible. Connected to this, CT-01-002

lists some examples for input that might not be expected but can nevertheless cause

strange or otherwise undesirable behavior.

Next,  short  notes must be made for  the fact  that  intermediate results  should not  be

exposed for cryptographic operations without a very good justification (see CT-01-003)

and the implementation of libhal could take a little more care when it comes to checking

flags (see CT-01-004). While ready and valid may currently have the same meaning, the

robustness  principle  also  applies  to  the  Microcontroller.  Observations  and  evidence

collected during the assessment  points  to a suggestion for  the FPGA to offer  some

means of software resetting in connection to individual cores. The Microcontroller’s libhal

could perform a reset after loading and before unloading a core, in doing so clearing the

internal  states  and  wiping  the  key  material.  Furthermore,  it  is  suggested  that  the

Microcontroller could implement a type of an execution-time watchdog. In other words,

an operation could be cancelled and the FPGA consequently reset if the result is not

available within a timeout, thus eliminating risks linked to the Denial-of-Service (DoS)

issues.

Cure53, Berlin · 09/26/18                              17/19



         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14 

         D 10709 Berlin

         cure53.de · mario@cure53.de 

General Impressions

This September 2018 joint security project executed by Cure53 and Trustworks is quite

significant  because  of  its  vitally  important  subject  matter.  Specifically,  the

CrypTech/DiamondKey open source HSM project  sets out to allow the community to

secure important Internet components like i.e. BGP via RPKI, as well as others. It is

pivotal  that  the CrypTech/DiamondKey compound seeks to ensure transparency and

cryptographic security to the users. As the goals are quite ambitious and sensitive, the

results must be interpreted with due diligence. This means that even a theoretically low-

number  of  nine  security-relevant  discoveries  must  be  seen  in  the  context  of  their

increased severities and the paramount risks that they carry.

To reiterate some details, this project proceeded swiftly, since unencumbered access to

all  source  code,  documentation  and  open  communication  with  the  developers  was

granted. Three test devices were delivered to two different teams, one of which was

made  remotely  accessible  to  verify  assumptions  made  during  the  audit.  While  a

complete pre-built firmware-bundle was provided for the convenience of the auditors and

used for the best part of the assessment, a custom firmware-bundle was also created

and flashed in order to better understand the deployment process in its entirety.

Eight  members of  the Cure53 & Trustworks testing team believe to have reached a

complete  coverage  and  gained  in-depth  familiarity  with  the  inner-workings  of  the

hardware/firmware combination. Their investigations spanned the client-side through to

the MCU and ending in the FPGA, which was made accessible via the extended design

documents and additional  consultations  with the developers.  An exception regarding

coverage  entailed  not  attempting  attacks  against  the  circuit  board  and  its  tamper-

proofing of the individual components, along with thermal side-channel attacks. This is

because the current system, while quite complete and in good shape, is still at the Alpha

phase of development. Consequently, this aspect was simply left out of scope at this

stage.

All six Work Packages were completed in a timely manner, beginning with the review of

documentation (WP1),  then building the firmware and booting the system (WP2),  all

underpinning the key auditing of the cryptographic and security concepts, the general C

code  audit  together  with  the  verification  of  the   interface  code,  and  the  Verilog

implementation of the underlying FPGA-based hardware (WPs 3-6).

The  testing  team  would  like  to  express  that  particular  effort  was  invested  into  the

theoretical and practical verification of all supported cryptographic primitives like AES,

ChaCha, SHA1/2 and internal protocols like cryptech_backup. The implementation of the

individual  primitives,  in  detail  AES,  ChaCha,  SHA1,  SHA256/512,  ECDSA256/384,

MODEXPA7 and TRNG was extensively probed for illicit  states and results that could

potentially expose plaintext or key material, including the search for possible time-based

side-channel attacks. The cryptographic design deployed by the CrypTech/DiamondKey

compound deserves highest praise.
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Closing Notes

To conclude, the current state of security observed at the CrypTech/DiamondKey HSM

firmware project is no small feat.  The testers acknowledge the accomplishments and

are convinced that the development team needs to be congratulated and celebrated for

reaching  this  important  milestone  of  being  subjected  to  external  scrutiny.  The

vulnerabilities isolated during the this assignment, while mostly easy to fix or at least not

overly  difficult  in  terms of  devising  appropriate  hardening  mechanisms,  nevertheless

clearly show that additional revisions and attention are necessitated by several aspects

of  the  analyzed  HSM-implementation.  It  is  recommended  that  the  entire  project  is

audited by the development team in accordance with the notes provided by the auditors,

as only such an extensive and all-encompassing approach can make it possible for the

project to finally leave the Alpha-stage and do so as a much more secure compound.

Once the issues are fixed and the design decisions reevaluated, Cure53 and Trustworks

believe that a state of maturity and readiness for general deployment can be reached.

This is considered a necessity because of the single-pointed significance of the HSM in

a truly secure cryptographic environment.

Cure53 would like to thank Phil Roberts, Jakob Schlyter, Dominique Douglas, Joachim

Strömbergson and Rob Austein from the respective CrypTech and DiamondKey teams

for their excellent project coordination, support and assistance, both before and during

this assignment.
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